Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76.779
Filter
1.
Sci Rep ; 14(1): 8442, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600110

ABSTRACT

Using clustering analysis for early vital signs, unique patient phenotypes with distinct pathophysiological signatures and clinical outcomes may be revealed and support early clinical decision-making. Phenotyping using early vital signs has proven challenging, as vital signs are typically sampled sporadically. We proposed a novel, deep temporal interpolation and clustering network to simultaneously extract latent representations from irregularly sampled vital signs and derive phenotypes. Four distinct clusters were identified. Phenotype A (18%) had the greatest prevalence of comorbid disease with increased prevalence of prolonged respiratory insufficiency, acute kidney injury, sepsis, and long-term (3-year) mortality. Phenotypes B (33%) and C (31%) had a diffuse pattern of mild organ dysfunction. Phenotype B's favorable short-term clinical outcomes were tempered by the second highest rate of long-term mortality. Phenotype C had favorable clinical outcomes. Phenotype D (17%) exhibited early and persistent hypotension, high incidence of early surgery, and substantial biomarker incidence of inflammation. Despite early and severe illness, phenotype D had the second lowest long-term mortality. After comparing the sequential organ failure assessment scores, the clustering results did not simply provide a recapitulation of previous acuity assessments. This tool may impact triage decisions and have significant implications for clinical decision-support under time constraints and uncertainty.


Subject(s)
Organ Dysfunction Scores , Sepsis , Humans , Acute Disease , Phenotype , Biomarkers , Cluster Analysis
2.
Nat Commun ; 15(1): 3103, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600123

ABSTRACT

Exercise is usually regarded to have short-term beneficial effects on immune health. Here we show that early-life regular exercise exerts long-term beneficial effects on inflammatory immunity. Swimming training for 3 months in male mice starting from 1-month-old curbs cytokine response and mitigates sepsis when exposed to lipopolysaccharide challenge, even after an 11-month interval of detraining. Metabolomics analysis of serum and liver identifies pipecolic acid, a non-encoded amino acid, as a pivotal metabolite responding to early-life regular exercise. Importantly, pipecolic acid reduces inflammatory cytokines in bone marrow-derived macrophages and alleviates sepsis via inhibiting mTOR complex 1 signaling. Moreover, early-life exercise increases histone 3 lysine 4 trimethylation at the promoter of Crym in the liver, an enzyme responsible for catalyzing pipecolic acid production. Liver-specific knockdown of Crym in adult mice abolishes this early exercise-induced protective effects. Our findings demonstrate that early-life regular exercise enhances anti-inflammatory immunity during middle-aged phase in male mice via epigenetic immunometabolic modulation, in which hepatic pipecolic acid production has a pivotal function.


Subject(s)
Anti-Inflammatory Agents , Sepsis , Mice , Animals , Male , Liver/metabolism , Histones/metabolism , Cytokines/metabolism , Epigenesis, Genetic
3.
Antimicrob Resist Infect Control ; 13(1): 38, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600526

ABSTRACT

BACKGROUND: Most surveillance systems for catheter-related bloodstream infections (CRBSI) and central line-associated bloodstream infections (CLABSI) are based on manual chart review. Our objective was to validate a fully automated algorithm for CRBSI and CLABSI surveillance in intensive care units (ICU). METHODS: We developed a fully automated algorithm to detect CRBSI, CLABSI and ICU-onset bloodstream infections (ICU-BSI) in patients admitted to the ICU of a tertiary care hospital in Switzerland. The parameters included in the algorithm were based on a recently performed systematic review. Structured data on demographics, administrative data, central vascular catheter and microbiological results (blood cultures and other clinical cultures) obtained from the hospital's data warehouse were processed by the algorithm. Validation for CRBSI was performed by comparing results with prospective manual BSI surveillance data over a 6-year period. CLABSI were retrospectively assessed over a 2-year period. RESULTS: From January 2016 to December 2021, 854 positive blood cultures were identified in 346 ICU patients. The median age was 61.7 years [IQR 50-70]; 205 (24%) positive samples were collected from female patients. The algorithm detected 5 CRBSI, 109 CLABSI and 280 ICU-BSI. The overall CRBSI and CLABSI incidence rates determined by automated surveillance for the period 2016 to 2021 were 0.18/1000 catheter-days (95% CI 0.06-0.41) and 3.86/1000 catheter days (95% CI: 3.17-4.65). The sensitivity, specificity, positive predictive and negative predictive values of the algorithm for CRBSI, were 83% (95% CI 43.7-96.9), 100% (95% CI 99.5-100), 100% (95% CI 56.5-100), and 99.9% (95% CI 99.2-100), respectively. One CRBSI was misclassified as an ICU-BSI by the algorithm because the same bacterium was identified in the blood culture and in a lower respiratory tract specimen. Manual review of CLABSI from January 2020 to December 2021 (n = 51) did not identify any errors in the algorithm. CONCLUSIONS: A fully automated algorithm for CRBSI and CLABSI detection in critically-ill patients using only structured data provided valid results. The next step will be to assess the feasibility and external validity of implementing it in several hospitals with different electronic health record systems.


Subject(s)
Catheter-Related Infections , Catheterization, Central Venous , Cross Infection , Sepsis , Humans , Female , Middle Aged , Cross Infection/epidemiology , Cross Infection/microbiology , Prospective Studies , Retrospective Studies , Catheter-Related Infections/diagnosis , Catheter-Related Infections/epidemiology , Catheter-Related Infections/microbiology , Catheters , Algorithms
4.
J Am Anim Hosp Assoc ; 60(3): 93-99, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662997

ABSTRACT

The objective of this study was to investigate the value of the lactate to albumin ratio (L:A) as a prognostic marker for mortality in septic dogs. A single-center retrospective case-control study based on clinical record review was conducted at an academic teaching hospital. All records were extracted for diagnoses of bacterial sepsis, septic peritonitis, septic shock, or septicemia between February 2012 and October 2021. The study included 143 dogs. The most commonly identified sepsis diagnoses in dogs were septic peritonitis (55%; 78/143), unclassified sepsis (20%), and sepsis secondary to wounds or dermatological conditions (10%; 15/143). Median lactate and albumin for all dogs at presentation were 2.80 mmol/L and 2.6 g/dL, respectively; the median L:A ratio was 1.22. No clinically or statistically significant differences in lactate (P = 0.631), albumin (P = 0.695), or L:A (P = 0.908) were found between survivors and nonsurvivors.


Subject(s)
Dog Diseases , Lactic Acid , Sepsis , Serum Albumin , Animals , Dogs , Retrospective Studies , Dog Diseases/blood , Dog Diseases/mortality , Case-Control Studies , Sepsis/veterinary , Sepsis/blood , Sepsis/mortality , Sepsis/diagnosis , Lactic Acid/blood , Female , Male , Serum Albumin/analysis , Biomarkers/blood , Prognosis
5.
Cell Commun Signal ; 22(1): 241, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664775

ABSTRACT

Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.


Subject(s)
Acute Lung Injury , Endothelial Cells , Respiratory Distress Syndrome , Sepsis , Humans , Sepsis/complications , Sepsis/pathology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/etiology , Acute Lung Injury/pathology , Acute Lung Injury/etiology , Endothelial Cells/pathology , Animals
6.
J Glob Health ; 14: 04089, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38665066

ABSTRACT

Background: Previous observational studies have investigated the association between educational attainment and sepsis, pneumonia, and urinary tract infections (UTIs). However, their findings have been susceptible to reverse causality and confounding factors. Furthermore, no study has examined the effect of educational level on the risk of infections of the skin and subcutaneous tissue (SSTIs). Thus, we aimed to evaluate the causal relationships between educational level and the risk of four infectious diseases using Mendelian randomisation (MR) techniques. Methods: We used univariable MR analysis to investigate the causal associations between educational attainment (years of schooling (n = 766 345) and holding college or university degree (n = 334 070)) and four infectious diseases (sepsis (n = 486 484), pneumonia (n = 486 484), UTIs (n = 463 010), and SSTIs (n = 218 792)). We included genetic instrumental variables with a genome-wide significance (P < 5 × 10-8) in the study. We used inverse variance-weighted estimation in the primary analysis and explored the stability of the results using multivariable MR analysis after adjusting for smoking, alcohol consumption, and body mass index. Results: Genetically predicted years of schooling were associated with a reduced risk of sepsis (odds ratio (OR) = 0.763; 95% confidence interval (CI) = 0.668-0.870, P = 5.525 × 10-5), pneumonia (OR = 0.637; 95% CI = 0.577-0.702, P = 1.875 × 10-19), UTIs (OR = 0.995; 95% CI = 0.993-0.997, P = 1.229 × 10-5), and SSTIs (OR = 0.696; 95% CI = 0.605-0.801, P = 4.034 × 10-7). We observed consistent results for the correlation between qualifications and infectious diseases. These findings remained stable in the multivariable MR analyses. Conclusions: Our findings suggest that increased educational attainment may be causally associated with a decreased risk of sepsis, pneumonia, UTIs, and SSTIs.


Subject(s)
Educational Status , Mendelian Randomization Analysis , Pneumonia , Sepsis , Urinary Tract Infections , Humans , Pneumonia/epidemiology , Sepsis/epidemiology , Urinary Tract Infections/epidemiology , Communicable Diseases/epidemiology , Causality , Male , Risk Factors , Female
7.
Metabolomics ; 20(3): 46, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641695

ABSTRACT

INTRODUCTION: Cardiac dysfunction after sepsis the most common and severe sepsis-related organ failure. The severity of cardiac damage in sepsis patients was positively associated to mortality. It is important to look for drugs targeting sepsis-induced cardiac damage. Our previous studies found that 4-phenylbutyric acid (PBA) was beneficial to septic shock by improving cardiovascular function and survival, while the specific mechanism is unclear. OBJECTIVES: We aimed to explore the specific mechanism and PBA for protecting cardiac function in sepsis. METHODS: The cecal ligation and puncture-induced septic shock models were used to observe the therapeutic effects of PBA on myocardial contractility and the serum levels of cardiac troponin-T. The mechanisms of PBA against sepsis were explored by metabolomics and network pharmacology. RESULTS: The results showed that PBA alleviated the sepsis-induced cardiac damage. The metabolomics results showed that there were 28 metabolites involving in the therapeutic effects of PBA against sepsis. According to network pharmacology, 11 hub genes were found that were involved in lipid metabolism and amino acid transport following PBA treatment. The further integrated analysis focused on 7 key targets, including Comt, Slc6a4, Maoa, Ppara, Pparg, Ptgs2 and Trpv1, as well as their core metabolites and pathways. In an in vitro assay, PBA effectively inhibited sepsis-induced reductions in Comt, Ptgs2 and Ppara after sepsis. CONCLUSIONS: PBA protects sepsis-induced cardiac injury by targeting Comt/Ptgs2/Ppara, which regulates amino acid metabolism and lipid metabolism. The study reveals the complicated mechanisms of PBA against sepsis.


Subject(s)
Heart Diseases , Phenylbutyrates , Sepsis , Shock, Septic , Humans , Lipid Metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/therapeutic use , Metabolomics , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Heart Diseases/complications , Amino Acids/metabolism
8.
Am J Case Rep ; 25: e941835, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625840

ABSTRACT

BACKGROUND CRS (cytokine release syndrome) is a massive activation of the inflammatory system characterized by a supra-physiological rate of inflammatory cytokines. The interleukin 6 cytokine plays a central role in CRS. The main clinical sign of CRS is fever, but CRS can lead to multiple organ failure in severe cases. CRS is usually described in sepsis, more recently in SARS COV-2 infection, and in chimeric antigen receptor T-cell therapy. However, it can also be associated with immune checkpoint inhibitors (ICIs), which is infrequently described. ICI have growing indications and can lead to CRS by causing an uncontrolled activation of the immune system. There are currently no treatment guidelines for ICI-induced CRS. CASE REPORT We report a rare case of grade 3 CRS induced by nivolumab associated with 5-fluorouracil and oxaliplatin for gastric cancer. The patient was 65-year-old man with an adenocarcinoma of the cardia. CRS developed during the tenth course of treatment and was characterized by fever, hypotension requiring vasopressors, hypoxemia, acute kidney injury, and thrombopenia. The patient was transferred quickly to the Intensive Care Unit. He was treated for suspected sepsis, but it was ruled out after multiple laboratory examinations. There was rapid resolution after infusion of hydrocortisone. CONCLUSIONS The use of ICIs is expanding. Nivolumab-induced CRS is rarely described but can be severe and lead to multiple organ dysfunction; therefore, intensive care practitioners should be informed about this adverse effect. More studies are needed to better understand this condition and establish treatment guidelines.


Subject(s)
COVID-19 , Sepsis , Male , Humans , Aged , Cytokine Release Syndrome/chemically induced , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Nivolumab/adverse effects , Cytokines
9.
BMJ Case Rep ; 17(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627051

ABSTRACT

This case reviews the clinical course of an elderly woman on chronic total parenteral nutrition who developed sepsis secondary to a rare, newly described gram-negative rod known as Phytobacter ursingii The patient noticed a leak in her Hickman catheter when infusing her nutrition. 24 hours after a new catheter was replaced, the patient developed fevers, chills and weakness. She presented to the hospital with hypotension and tachycardia, meeting shock criteria. Blood cultures grew P. ursingii, and the diagnosis of septic shock was confirmed. Susceptibilities informed antibiotic coverage, and she ultimately improved within the next 48 hours.


Subject(s)
Bacteremia , Gammaproteobacteria , Sepsis , Shock, Septic , Female , Humans , Aged , Anti-Bacterial Agents/therapeutic use , Sepsis/diagnosis , Sepsis/drug therapy , Shock, Septic/drug therapy , Bacteremia/diagnosis , Bacteremia/drug therapy
10.
Front Immunol ; 15: 1346097, 2024.
Article in English | MEDLINE | ID: mdl-38633258

ABSTRACT

Introduction: A hallmark of T cell dysregulation during sepsis is the downregulation of costimulatory molecules. CD28 is one of T cell costimulatory molecules significantly altered on memory T cells during sepsis. We recently showed that treatment with a αCD28 agonist in septic immunologically experienced mice led to improved survival. Therefore, here we aimed to identify the cell subset(s) necessary for the survival benefit observed in the context of CD28 agonism, and to further investigate the mechanism by which CD28 agonism improves sepsis survival in immunologically experienced mice. Methods: Mice received specific pathogen inoculation to generate memory T cell populations similar in frequency to that of adult humans. Once these infections were cleared and the T cell response had transitioned to the memory phase, animals were rendered septic via cecal ligation and puncture in the presence or absence of an agonistic anti-CD28 mAb. Results: Results demonstrated that CD8+ T cells, and not bulk CD4+ T cells or CD25+ regulatory T cells, were necessary for the survival benefit observed in CD28 agonist-treated septic immunologically experienced mice. Upon examination of these CD8+ T cells, we found that CD28 agonism in septic immunologically experienced mice was associated with an increase in Foxp3+ CD8+ T cells as compared to vehicle-treated controls. When CD8+ T cells were depleted in septic immunologically experienced mice in the setting of CD28 agonism, a significant increase in levels of inflammatory cytokines in the blood was observed. Discussion: Taken together, these results indicate that CD28 agonism in immunologically experienced mice effectively suppresses inflammation via a CD8+-dependent mechanism to decrease mortality during sepsis.


Subject(s)
CD28 Antigens , Sepsis , Humans , Mice , Animals , CD8-Positive T-Lymphocytes , T-Lymphocytes, Regulatory
11.
Ann Clin Microbiol Antimicrob ; 23(1): 34, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637789

ABSTRACT

BACKGROUND: Chromobacterium is a genus of fourteen species with validly published names, most often found in soil and waters in tropical and subtropical regions around the world. The most well-known species of the genus, C. violaceum, occasionally causes clinically relevant infections; cases of soft tissue infections with septicemia and fatal outcomes have been described. CASE PRESENTATION: Here, we present a clinical case report of a 79-year-old man from Sweden with a soft-tissue infection and septicemia. The pathogen was identified as a strain of Chromobacterium species, but not C. violaceum. The patient was treated with clindamycin and ciprofloxacin and recovered well. CONCLUSIONS: This case report demonstrates the potential of Chromobacterium species as infectious agents in immunocompetent patients. It also indicates the existence of a novel species.


Subject(s)
Gram-Negative Bacterial Infections , Sepsis , Male , Humans , Aged , Chromobacterium , Sweden , Sepsis/diagnosis , Sepsis/drug therapy , Sepsis/microbiology , Ciprofloxacin/therapeutic use , Clindamycin/therapeutic use , Gram-Negative Bacterial Infections/microbiology
12.
J Biomed Sci ; 31(1): 40, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637839

ABSTRACT

Sepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment. Due to their unique properties, including diversity, ease of synthesis, biocompatibility, high specificity, and excellent pharmacological efficacy, peptides hold great potential as part of nanotechnology approaches against sepsis. Herein, we present a comprehensive and up-to-date review of the applications of peptides in nanosystems for combating sepsis, with the potential to expedite diagnosis and enhance management outcomes. Firstly, sepsis pathophysiology, antisepsis drug targets, current modalities in management and diagnosis with their limitations, and the potential of peptides to advance the diagnosis and management of sepsis have been adequately addressed. The applications have been organized into diagnostic or managing applications, with the last one being further sub-organized into nano-delivered bioactive peptides with antimicrobial or anti-inflammatory activity, peptides as targeting moieties on the surface of nanosystems against sepsis, and peptides as nanocarriers for antisepsis agents. The studies have been grouped thematically and discussed, emphasizing the constructed nanosystem, physicochemical properties, and peptide-imparted enhancement in diagnostic and therapeutic efficacy. The strengths, limitations, and research gaps in each section have been elaborated. Finally, current challenges and potential future paths to enhance the use of peptides in nanosystems for combating sepsis have been deliberately spotlighted. This review reaffirms peptides' potential as promising biomaterials within nanotechnology strategies aimed at improving sepsis diagnosis and management.


Subject(s)
Anti-Infective Agents , Sepsis , Humans , Drug Delivery Systems , Peptides/therapeutic use , Nanotechnology , Sepsis/diagnosis , Sepsis/drug therapy
13.
Clinics (Sao Paulo) ; 79: 100354, 2024.
Article in English | MEDLINE | ID: mdl-38640751

ABSTRACT

AIM: The study was to clarify the mechanism of miR-1258 targeting Prep1 (pKnox1) to control Transforming Growth Factor ß1 (TGF-ß1)/SMAD3 pathway in septic Acute Lung Injury (ALI)-induced oxidative stress and inflammation. METHODS: BEAS-2B cells and C57BL/6 mice were used to make in vitro and in vivo septic ALI models, respectively. miR-1258 expression was checked by RT-qPCR. After transfection in the in vitro experimental model, inflammation, oxidative stress, viability, and apoptosis were observed through ELISA, MTT, and flow cytometry. RESULTS: In the in vivo model after miR-1258 overexpression treatment, inflammation, oxidative stress, and lung injury were further investigated. The targeting relationship between miR-1258 and Pknox1 was tested. Low miR-1258 was expressed in septic ALI patients, LPS-treated BEAS-2B cells, and mice. Upregulated miR-1258 prevented inflammation, oxidative stress, and apoptosis but enhanced the viability of LPS-treated BEAS-2B cells. The impact of upregulated miR-1258 on LPS-treated BEAS-2B cells was mitigated by inhibiting Pknox1 expression. MiR-1258 overexpression had the alleviating effects on inflammation, oxidative stress, and lung injury of LPS-injured mice through suppressing Pknox1 expression and TGF-ß1/SMAD3 cascade activation. CONCLUSIONS: The study concludes that miR-1258 suppresses oxidative stress and inflammation in septic ALI through the Pknox1-regulated TGF-ß1/SMAD3 cascade.


Subject(s)
Acute Lung Injury , Apoptosis , Mice, Inbred C57BL , MicroRNAs , Oxidative Stress , Sepsis , Smad3 Protein , Transforming Growth Factor beta1 , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Animals , Transforming Growth Factor beta1/metabolism , Smad3 Protein/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Sepsis/complications , Sepsis/metabolism , Sepsis/genetics , Male , Inflammation/metabolism , Disease Models, Animal , Mice , Up-Regulation , Signal Transduction
15.
Mil Med Res ; 11(1): 24, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644472

ABSTRACT

Sepsis, a severe systemic inflammatory response to infection, remains a leading cause of morbidity and mortality worldwide. Exosomes, as mediators of intercellular communication, play a pivotal role in the pathogenesis of sepsis through modulating immune responses, metabolic reprogramming, coagulopathy, and organ dysfunction. This review highlights the emerging significance of exosomes in these processes. Initially, it provides an in-depth insight into exosome biogenesis and characterization, laying the groundwork for understanding their diverse and intricate functions. Subsequently, it explores the regulatory roles of exosomes in various immune cells such as neutrophils, macrophages, dendritic cells, T cells, and B cells. This analysis elucidates how exosomes are pivotal in modulating immune responses, thus contributing to the complexity of sepsis pathophysiology. Additionally, this review delves into the role of exosomes in the regulation of metabolism and subsequent organ dysfunction in sepsis. It also establishes a connection between exosomes and the coagulation cascade, which affects endothelial integrity and promotes thrombogenesis in sepsis. Moreover, the review discusses the dual role of exosomes in the progression and resolution of sepsis, exploring their complex involvement in inflammation and healing processes. Furthermore, it underscores their potential as biomarkers and therapeutic targets. Understanding these mechanisms presents new opportunities for novel interventions to mitigate the severe outcomes of sepsis, emphasizing the therapeutic promise of exosome research in critical care settings.


Subject(s)
Exosomes , Multiple Organ Failure , Sepsis , Exosomes/metabolism , Humans , Sepsis/physiopathology , Sepsis/complications , Sepsis/metabolism , Multiple Organ Failure/physiopathology , Multiple Organ Failure/etiology , Cell Communication/physiology , Inflammation/physiopathology , Animals
16.
PeerJ ; 12: e17205, 2024.
Article in English | MEDLINE | ID: mdl-38646480

ABSTRACT

Background: Sepsis can disrupt immune regulation and lead to acute respiratory distress syndrome (ARDS) frequently. Remazolam, a fast-acting hypnotic drug with superior qualities compared to other drugs, was investigated for its potential protective effects against sepsis-induced ARDS. Methods: Forty Sprague-Dawley rats were randomly divided into four groups, including the sepsis + saline group, sham operation + saline group, sham operation + remazolam group and the sepsis + remazolam group. Lung tissues of rats were extracted for HE staining to assess lung damage, and the wet weight to dry weight (W/D) ratio was calculated. The levels of proinflammatory factors, anti-inflammatory factors, CD4+ and CD8+ T cells in peripheral blood, MDA, MPO, and ATP in the lung tissue were measured by using ELISA. Western blotting was performed to determine the protein expression of HMGB1 in lung tissues. Results: In comparison to the sham operation + saline and sham operation + remazolam groups, the sepsis + saline group exhibited significantly higher values for W/D ratio, lung damage score, IL-1ß, IL-6, TNF-α, PCT, CRP, MDP and MPO, while exhibiting lower levels of CD4+ and CD8+ T lymphocytes, PaO2, PCO2, and ATP. The rats in the sepsis + saline group displayed ruptured alveolar walls and evident interstitial lung edema. However, the rats in the sepsis + remazolam group showed improved alveolar structure. Furthermore, the HMGB1 protein expression in the sepsis + remazolam group was lower than the sepsis + saline group. Conclusion: Remazolam can alleviate the inflammatory response in infected rats, thereby alleviating lung injury and improving immune function, which may be attributed to the reduction in HMGB1 protein expression.


Subject(s)
Rats, Sprague-Dawley , Respiratory Distress Syndrome , Sepsis , Animals , Sepsis/complications , Sepsis/immunology , Sepsis/metabolism , Respiratory Distress Syndrome/immunology , Rats , Male , HMGB1 Protein/metabolism , Disease Models, Animal , Lung/pathology , Lung/drug effects , Lung/immunology , Lung/metabolism
17.
BMC Pulm Med ; 24(1): 197, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649913

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) has emerged as a promising noninvasive method for delivering oxygen to critically ill patients, particularly those with sepsis and acute lung injury. However, uncertainties persist regarding its therapeutic benefits in this specific patient population. METHODS: This retrospective study utilized a propensity score-matched cohort from the Medical Information Mart in Intensive Care-IV (MIMIC-IV) database to explore the correlation between HFNC utilization and mortality in patients with sepsis-induced acute lung injury. The primary outcome was 28-day all-cause mortality. RESULTS: In the propensity score-matched cohort, the 28-day all-cause mortality rate was 18.63% (95 out of 510) in the HFNC use group, compared to 31.18% (159 out of 510) in the non-HFNC group. The use of HFNC was associated with a lower 28-day all-cause mortality rate (hazard ratio [HR] = 0.53; 95% confidence interval [CI] = 0.41-0.69; P < 0.001). HFNC use was also associated with lower ICU mortality (odds ratio [OR] = 0.52; 95% CI = 0.38-0.71; P < 0.001) and lower in-hospital mortality (OR = 0.51; 95% CI = 0.38-0.68; P < 0.001). Additionally, HFNC use was found to be associated with a statistically significant increase in both the ICU and overall hospitalization length. CONCLUSIONS: These findings indicate that HFNC may be beneficial for reducing mortality rates among sepsis-induced acute lung injury patients; however, it is also associated with longer hospital stays.


Subject(s)
Acute Lung Injury , Cannula , Hospital Mortality , Intensive Care Units , Oxygen Inhalation Therapy , Propensity Score , Sepsis , Humans , Retrospective Studies , Male , Sepsis/mortality , Sepsis/therapy , Sepsis/complications , Female , Middle Aged , Aged , Acute Lung Injury/mortality , Acute Lung Injury/therapy , Acute Lung Injury/etiology , Oxygen Inhalation Therapy/methods , Critical Illness/mortality
18.
Int J Immunopathol Pharmacol ; 38: 3946320241234736, 2024.
Article in English | MEDLINE | ID: mdl-38652556

ABSTRACT

Sepsis, critical condition marked by severe organ dysfunction from uncontrolled infection, involves the endothelium significantly. Macrophages, through paracrine actions, play a vital role in sepsis, but their mechanisms in sepsis pathogenesis remain elusive. Objective: We aimed to explore how macrophage-derived exosomes with low miR-141 expression promote pyroptosis in endothelial cells (ECs). Exosomes from THP-1 cell supernatant were isolated and characterized. The effects of miR-141 mimic/inhibitor on apoptosis, proliferation, and invasion of Human Umbilical Vein Endothelial Cells (HUVECs) were assessed using flow cytometry, CCK-8, and transwell assays. Key pyroptosis-related proteins, including caspase-1, IL-18, IL-1ß, NLR Family Pyrin Domain Containing 3 (NLRP3), ASC, and cleaved-GSDMD, were analyzed via Western blot. The interaction between miR-141 and NLRP3 was studied using RNAhybrid v2.2 and dual-Luciferase reporter assays. The mRNA and protein level of NLRP3 after exosomal miR-141 inhibitor treatment was detected by qPCR and Western blot, respectively. Exosomes were successfully isolated. miR-141 mimic reduced cell death and pyroptosis-related protein expression in HUVECs, while the inhibitor had opposite effects, increasing cell death, and enhancing pyroptosis protein expression. Additionally, macrophage-derived exosomal miR-141 inhibitor increased cell death and pyroptosis-related proteins in HUVECs. miR-141 inhibits NLRP3 transcription. Macrophages facilitate sepsis progression by secreting miR-141 decreased exosomes to activate NLRP3-mediated pyroptosis in ECs, which could be a potentially valuable target of sepsis therapy.


Subject(s)
Exosomes , Human Umbilical Vein Endothelial Cells , Macrophages , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Sepsis , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Humans , Exosomes/metabolism , Macrophages/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Sepsis/metabolism , Sepsis/pathology , THP-1 Cells , Disease Progression , Animals , Mice
19.
BMJ Open ; 14(4): e075158, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653508

ABSTRACT

INTRODUCTION: Sepsis remains the major cause of death among hospitalised patients in intensive care. While targeting sepsis-causing pathogens with source control or antimicrobials has had a dramatic impact on morbidity and mortality of sepsis patients, this strategy remains insufficient for about one-third of the affected individuals who succumb. Pharmacological targeting of mechanisms that reduce sepsis-defining organ dysfunction may be beneficial. When given at low doses, the anthracycline epirubicin promotes tissue damage control and lessens the severity of sepsis independently of the host-pathogen load by conferring disease tolerance to infection. Since epirubicin at higher doses can be myelotoxic, a first dose-response trial is necessary to assess the potential harm of this drug in this new indication. METHODS AND ANALYSIS: Epirubicin for the Treatment of Sepsis and Septic Shock-1 is a randomised, double-blind, placebo-controlled phase 2 dose-escalation phase IIa clinical trial to assess the safety of epirubicin as an adjunctive in patients with sepsis. The primary endpoint is the 14-day myelotoxicity. Secondary and explorative outcomes include 30-day and 90-day mortality, organ dysfunction, pharmacokinetic/pharmacodynamic (PK/PD) and cytokine release. Patients will be randomised in three consecutive phases. For each study phase, patients are randomised to one of the two study arms (epirubicin or placebo) in a 4:1 ratio. Approximately 45 patients will be recruited. Patients in the epirubicin group will receive a single dose of epirubicin (3.75, 7.5 or 15 mg/m2 depending on the study phase. After each study phase, a data and safety monitoring board will recommend continuation or premature stopping of the trial. The primary analyses for each dose level will report the proportion of myelotoxicity together with a 95% CI. A potential dose-toxicity association will be analysed using a logistic regression model with dose as a covariate. All further analyses will be descriptive. ETHICS AND DISSEMINATION: The protocol is approved by the German Federal Institute for Drugs and Medical Devices. The results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT05033808.


Subject(s)
Epirubicin , Sepsis , Shock, Septic , Humans , Epirubicin/administration & dosage , Epirubicin/adverse effects , Epirubicin/therapeutic use , Shock, Septic/drug therapy , Double-Blind Method , Sepsis/drug therapy , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic , Male , Female , Dose-Response Relationship, Drug , Adult
20.
Int J Surg ; 110(4): 2355-2365, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38668663

ABSTRACT

BACKGROUND: Sepsis syndromes are a major burden in the ICU with very high mortality. Vasopressin and copeptin are released in response to hypovolemia and have shown potential significance in diagnosing sepsis. OBJECTIVE: To investigate the levels of copeptin in patients with sepsis syndromes and evaluate its relation with patient prognosis and mortality. METHODS: Four databases were searched for literature published from inception to the 8th of November 2022. Original research articles where copeptin was measured in sepsis patients and compared with controls were included. Data extraction and synthesis: study characteristics, levels of copeptin in the participants, and copeptin assay description were extracted. Levels of copeptin in patients were pooled and compared with controls in terms of the standard mean difference (SMD) generated using a random-effects model. RESULTS: Fifteen studies met the selection criteria. Copeptin levels were significantly higher in patients with sepsis, severe sepsis, and septic shock as compared to controls [(SMD: 1.49, 95% CI: 0.81-2.16, P<0.0001), (SMD: 1.94, 95% CI: 0.34-3.54, P=0.02), and (SMD: 2.17, 95% CI: 0.68-3.66, P=0.004), respectively]. The highest copeptin levels were noted in septic shock patients. The admission copeptin levels were significantly lower in survivors as compared to nonsurvivors (SMD: -1.73; 95% CI: -2.41 to -1.06, P<0.001). CONCLUSION AND RELEVANCE: Copeptin was significantly elevated in sepsis, severe sepsis, and septic shock. Survivors had a significantly lower copeptin during admission. Copeptin offered an excellent predictability to predict 1-month mortality. Measuring the copeptin in sepsis patients can aid treating physicians to foresee patients' prognosis.


Subject(s)
Glycopeptides , Sepsis , Humans , Glycopeptides/blood , Prognosis , Sepsis/mortality , Sepsis/blood , Sepsis/diagnosis , Biomarkers/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...